Suppression of protein aggregation by chaperone modification of high molecular weight complexes
نویسندگان
چکیده
Protein misfolding and aggregation are associated with many neurodegenerative diseases, including Huntington's disease. The cellular machinery for maintaining proteostasis includes molecular chaperones that facilitate protein folding and reduce proteotoxicity. Increasing the protein folding capacity of cells through manipulation of DNAJ chaperones has been shown to suppress aggregation and ameliorate polyglutamine toxicity in cells and flies. However, to date these promising findings have not been translated to mammalian models of disease. To address this issue, we developed transgenic mice that over-express the neuronal chaperone HSJ1a (DNAJB2a) and crossed them with the R6/2 mouse model of Huntington's disease. Over-expression of HSJ1a significantly reduced mutant huntingtin aggregation and enhanced solubility. Surprisingly, this was mediated through specific association with K63 ubiquitylated, detergent insoluble, higher order mutant huntingtin assemblies that decreased their ability to nucleate further aggregation. This was dependent on HSJ1a client binding ability, ubiquitin interaction and functional co-operation with HSP70. Importantly, these changes in mutant huntingtin solubility and aggregation led to improved neurological performance in R6/2 mice. These data reveal that prevention of further aggregation of detergent insoluble mutant huntingtin is an additional level of quality control for late stage chaperone-mediated neuroprotection. Furthermore, our findings represent an important proof of principle that DNAJ manipulation is a valid therapeutic approach for intervention in Huntington's disease.
منابع مشابه
The chaperone ability comparison of norma II-casein and modified d-casein upon interaction with lysozinie
Diminishing protein aggregation by chaperone is very important factor in medicine and industry. In this paper, itis induced the chaperone ability for 0-casein upon modification of its acidic residues by Woodward reagentK(WRK) and examined on lysozyme as a target protein at pH 7.2 and outlined the mechanism for chaperoneability of modified system by UV-Vis and fluorescence spectroscopy and theor...
متن کاملRole of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis
Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...
متن کاملProteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions
Malaria parasites modify their human host cell, the mature erythrocyte. This modification is mediated by a large number of parasite proteins that are exported to the host cell, and is also the underlying cause for the pathology caused by malaria infection. Amongst these proteins are many Hsp40 co-chaperones, and a single Hsp70. These proteins have been implicated in several processes in the hos...
متن کاملThe Effect of Hoffmeister Salts on the Chaperoning Action of β-Casein in Preventing Aggregation of Reduced β-Lactalbumin
Protein aggregation and precipitation is associated with many debilitating diseases including Alzheimer's, Parkinson's, and light-chain amyloidosis. β-Casein, a member of the casein family, has been demonstrated to exhibit chaperone-like activity to protect protein form aggregation. Hofmeister salts (lyotropice series) are a class of ions which have an effect on the solubility and also the stab...
متن کاملCataract-Causing Defect of a Mutant γ-Crystallin Proceeds through an Aggregation Pathway Which Bypasses Recognition by the α-Crystallin Chaperone
BACKGROUND The transparency of the eye lens depends upon maintenance of the native state of the γ- and β-crystallins, which is aided by the abundant chaperones αA- and αB-crystallin. Mature onset cataract, the leading cause of blindness worldwide, involves the polymerization of covalently damaged or partially unfolded crystallins into light-scattering aggregates. A number of single amino acid s...
متن کامل